CONGRUENCE & SIMILARITY OF TRIANGLES

Complete SSC CGL Geometry Notes

Comprehensive Guide with Theorems & Examples • Created by GovtExamPrep

1. CONGRUENCE OF TRIANGLES - BASIC CONCEPTS

Definition and Meaning

Congruent Triangles: Two triangles are congruent if they have exactly the same size and shape. This means:

- Corresponding sides are equal
- Corresponding angles are equal
- They can be superimposed exactly on each other

[Diagram: Two congruent triangles showing corresponding sides and angles]

Symbol: ≅

Notation: If $\triangle ABC \cong \triangle PQR$, then:

• AB = PQ, BC = QR, CA = RP

• $\angle A = \angle P$, $\angle B = \angle Q$, $\angle C = \angle R$

Criteria for Congruence

Criterion	Condition	Abbreviation
Side-Side-Side	All three sides equal	SSS
Side-Angle-Side	Two sides and included angle equal	SAS
Angle-Side-Angle	Two angles and included side equal	ASA
Angle-Angle-Side	Two angles and non-included side equal	AAS
Right-Hypotenuse- Side	Right angle, hypotenuse and one side equal	RHS

Important: AAA (Angle-Angle-Angle) is NOT a congruence criterion. It only ensures similarity, not congruence.

2. CONGRUENCE CRITERIA - DETAILED EXPLANATION

SSS (Side-Side-Side) Congruence

Theorem: If three sides of one triangle are equal to three sides of another triangle, then the triangles are congruent.

Example: In triangles ABC and PQR, AB = PQ = 5cm, BC = QR = 6cm, AC = PR = 7cm. Prove \triangle ABC \cong \triangle PQR

Solution:

- AB = PQ = 5cm (Given)
- BC = QR = 6cm (Given)
- AC = PR = 7cm (Given)
- Therefore, by SSS criterion, $\triangle ABC \cong \triangle PQR$

SAS (Side-Angle-Side) Congruence

Theorem: If two sides and the included angle of one triangle are equal to two sides and included angle of another triangle, then the triangles are congruent.

Example: In $\triangle ABC$ and $\triangle DEF$, AB = DE = 4cm, $\angle B = \angle E = 60^{\circ}$, BC = EF = 5cm. Prove congruence.

Solution:

- AB = DE = 4cm (Given)
- $\angle B = \angle E = 60^{\circ}$ (Given)
- BC = EF = 5cm (Given)
- Angle B is included between AB and BC
- Angle E is included between DE and EF
- Therefore, by SAS criterion, $\triangle ABC \cong \triangle DEF$

ASA (Angle-Side-Angle) Congruence

Theorem: If two angles and the included side of one triangle are equal to two angles and included side of another triangle, then the triangles are congruent.

Example: In $\triangle PQR$ and $\triangle XYZ$, $\angle P = \angle X = 50^{\circ}$, PQ = XY = 6cm, $\angle Q = \angle Y = 70^{\circ}$. Prove congruence.

- $\angle P = \angle X = 50^{\circ}$ (Given)
- PQ = XY = 6cm (Given)
- $\angle Q = \angle Y = 70^{\circ}$ (Given)
- Side PQ is included between ∠P and ∠Q
- Side XY is included between $\angle X$ and $\angle Y$
- Therefore, by ASA criterion, $\Delta PQR \cong \Delta XYZ$

3. SIMILARITY OF TRIANGLES - BASIC CONCEPTS

Definition and Meaning

Similar Triangles: Two triangles are similar if they have the same shape but not necessarily the same size. This means:

- Corresponding angles are equal
- Corresponding sides are proportional

[Diagram: Two similar triangles showing proportional sides and equal angles]

Symbol: ~

Notation: If $\triangle ABC \sim \triangle PQR$, then:

- $\angle A = \angle P$, $\angle B = \angle Q$, $\angle C = \angle R$
- AB/PQ = BC/QR = CA/RP = k (constant ratio)

Criteria for Similarity

Criterion	Condition	Abbreviation
Angle-Angle- Angle	All three angles equal	AAA
Side-Side-Side	All three sides proportional	SSS
Side-Angle-Side	Two sides proportional and included angle equal	SAS

Important: For similarity, AAA is sufficient (unlike congruence where AAA is not sufficient).

4. SIMILARITY CRITERIA - DETAILED EXPLANATION

AAA (Angle-Angle-Angle) Similarity

Theorem: If in two triangles, corresponding angles are equal, then their corresponding sides are proportional and hence the triangles are similar.

Example: In $\triangle ABC$ and $\triangle PQR$, $\angle A = \angle P = 40^{\circ}$, $\angle B = \angle Q = 60^{\circ}$, $\angle C = \angle R = 80^{\circ}$. Prove similarity.

Solution:

- $\angle A = \angle P = 40^{\circ}$ (Given)
- $\angle B = \angle Q = 60^{\circ}$ (Given)
- $\angle C = \angle R = 80^{\circ}$ (Given)
- All corresponding angles are equal
- Therefore, by AAA criterion, ΔABC ~ ΔPQR

SSS (Side-Side-Side) Similarity

Theorem: If in two triangles, sides of one triangle are proportional to the sides of another triangle, then their corresponding angles are equal and hence the triangles are similar.

Example: In \triangle ABC and \triangle DEF, AB/DE = BC/EF = CA/FD = 2/3. Prove similarity.

Solution:

- AB/DE = 2/3 (Given)
- BC/EF = 2/3 (Given)
- CA/FD = 2/3 (Given)
- All corresponding sides are proportional
- Therefore, by SSS criterion, ΔABC ~ ΔDEF
- Scale factor = 2/3

SAS (Side-Angle-Side) Similarity

Theorem: If one angle of a triangle is equal to one angle of another triangle and the sides including these angles are proportional, then the triangles are similar.

Example: In \triangle PQR and \triangle XYZ, \angle Q = \angle Y = 50°, PQ/XY = QR/YZ = 3/4. Prove similarity.

- $\angle Q = \angle Y = 50^{\circ}$ (Given)
- PQ/XY = 3/4 (Given)
- QR/YZ = 3/4 (Given)
- Sides including equal angles are proportional
- Therefore, by SAS criterion, $\Delta PQR \sim \Delta XYZ$

5. COMPARISON: CONGRUENCE vs SIMILARITY

Key Differences

Aspect	Congruence	Similarity
Size	Same size	Different sizes possible
Shape	Same shape	Same shape
Symbol	≅	~
AAA Criterion	Not applicable	Applicable
Side Ratio	Exactly equal (1:1)	Proportional (k:1)

Relationship: All congruent triangles are similar (with scale factor 1), but all similar triangles are not necessarily congruent.

Scale Factor and Ratio

Scale Factor (k):

k = (Side of triangle 1) / (Corresponding side of triangle 2)

Area Ratio:

(Area of triangle 1) / (Area of triangle 2) = k^2

For congruent triangles: k = 1, so areas are equal

Example: If $\triangle ABC \sim \triangle PQR$ with scale factor 3/2, and area of $\triangle ABC = 36 \text{cm}^2$, find area of $\triangle PQR$.

- Scale factor k = 3/2
- Area ratio = $k^2 = (3/2)^2 = 9/4$
- Area(ABC)/Area(PQR) = 9/4

- 36/Area(PQR) = 9/4
- Area(PQR) = $(36 \times 4)/9 = 16 \text{cm}^2$

6. IMPORTANT THEOREMS AND PROPERTIES

Basic Proportionality Theorem (Thales Theorem)

Theorem: If a line is drawn parallel to one side of a triangle intersecting the other two sides, then it divides the two sides in the same ratio.

Example: In \triangle ABC, DE || BC. If AD = 3cm, DB = 2cm, AE = 4.5cm, find EC.

Solution:

- By Basic Proportionality Theorem:
- AD/DB = AE/EC
- 3/2 = 4.5/EC
- EC = $(4.5 \times 2)/3 = 3$ cm

Pythagoras Theorem

Theorem: In a right-angled triangle, the square of the hypotenuse is equal to the sum of squares of the other two sides.

$$AC^2 = AB^2 + BC^2$$
 (where $\angle B = 90^\circ$)

Example: In right $\triangle ABC$, $\angle B = 90^{\circ}$, AB = 6cm, BC = 8cm. Find AC.

- By Pythagoras Theorem: $AC^2 = AB^2 + BC^2$
- $AC^2 = 6^2 + 8^2 = 36 + 64 = 100$
- AC = √100 = 10cm

7. SSC CGL PRACTICE PROBLEMS

Previous Year Question Types

Problem 1: In \triangle ABC and \triangle DEF, AB = DE, \angle A = \angle D, \angle B = \angle E. Which congruence criterion applies?

Solution:

- AB = DE (Given)
- $\angle A = \angle D$ (Given)
- $\angle B = \angle E$ (Given)
- Side AB is included between $\angle A$ and $\angle B$
- Therefore, ASA criterion applies

Problem 2: $\triangle ABC \sim \triangle PQR$ with AB/PQ = 3/5. If BC = 12cm, find QR.

Solution:

- Scale factor k = AB/PQ = 3/5
- BC/QR = 3/5
- 12/QR = 3/5
- QR = $(12 \times 5)/3 = 20$ cm

Problem 3: In \triangle ABC, DE || BC, AD = 4cm, BD = 6cm, AE = 5cm. Find AC.

- By Basic Proportionality Theorem:
- AD/BD = AE/EC
- 4/6 = 5/EC
- EC = $(5 \times 6)/4 = 7.5$ cm
- AC = AE + EC = 5 + 7.5 = 12.5cm

8. QUICK FORMULAS & SHORTCUTS

Memory Tips

Congruence Criteria:

- SSS All sides equal
- SAS Two sides and included angle equal
- ASA Two angles and included side equal
- AAS Two angles and any side equal
- RHS Right angle, hypotenuse, side

Similarity Criteria:

- AAA All angles equal
- SSS All sides proportional
- SAS Two sides proportional and included angle equal

Area Relationships:

- For similar triangles: Area ratio = (Scale factor)²
- For congruent triangles: Areas equal

Important Values

Scale Factor (k)	Side Ratio	Area Ratio	Perimeter Ratio
1/2	1:2	1:4	1:2
2/3	2:3	4:9	2:3
3/4	3:4	9:16	3:4
1 (Congruent)	1:1	1:1	1:1

9. SSC CGL PREPARATION STRATEGY

Expected Marks Distribution

Торіс	Frequency	Difficulty	Marks Weightage
Congruence Criteria	High	Easy-Medium	2-3 marks
Similarity Criteria	High	Medium	2-3 marks
Basic Proportionality	Medium	Medium	1-2 marks
Area Problems	Medium	Medium-Hard	1-2 marks
Mixed Problems	High	Hard	2-3 marks

25-Day Study Plan

Week 1-2: Foundation Building

- Days 1-5: Congruence concepts and criteria
- Days 6-10: Similarity concepts and criteria
- Days 11-15: Comparison and applications

Week 3-4: Advanced Practice

- Days 16-20: Theorems and proofs
- Days 21-25: Previous year papers and mock tests

Daily Practice: 5 congruence problems, 5 similarity problems, learn all criteria, practice area calculations.

Congruence & Similarity of Triangles - SSC CGL Master Notes

Comprehensive Guide with Theorems & Examples • Created by GovtExamPrep

© GovtExamPrep - All educational rights reserved. This content may be freely distributed for educational purposes.