TRIANGLES & THEIR CENTERS

Complete SSC CGL Master Notes

Comprehensive Educational Content • Created by GovtExamPrep

1. TRIANGLE FUNDAMENTALS & TYPES

Basic Definition

A **triangle** is a polygon with three edges and three vertices. It is one of the basic shapes in geometry.

Triangle ABC with:

• Vertices: A, B, C

• Sides: AB, BC, CA

• Angles: ∠A, ∠B, ∠C

• Sum of angles: $\angle A + \angle B + \angle C = 180^{\circ}$

Types of Triangles

Based on Sides	Properties	Area Formula
Equilateral	All sides equal, all angles 60°	$(\sqrt{3}/4) \times a^2$
Isosceles	Two sides equal, two angles equal	(b/4)√(4a² - b²)
Scalene	All sides different	$\sqrt{[s(s-a)(s-b)(s-c)]}$

Based on Angles	Properties	Area Formula
Acute	All angles < 90°	½ × base × height
Right	One angle = 90°	½ × base × height
Obtuse	One angle > 90°	½ × base × height

2. IMPORTANT TRIANGLE FORMULAS

Area Formulas

1. Basic Formula: Area = ½ × base × height

2. Heron's Formula: Area = $\sqrt{[s(s-a)(s-b)(s-c)]}$ where s = (a+b+c)/2

3. Using Trigonometry: Area = ½ × ab × sin(C)

4. Equilateral Triangle: Area = $(\sqrt{3}/4) \times a^2$

5. Right Triangle: Area = ½ × (leg1 × leg2)

Perimeter & Semi-perimeter

Perimeter: P = a + b + c

Semi-perimeter: s = (a + b + c)/2For Equilateral: P = 3a, s = 3a/2

3. CENTROID - CENTER OF GRAVITY

Definition & Properties

Centroid (G) is the point where all three medians of the triangle intersect. It is the center of gravity of the triangle.

Coordinates: $G = [(x_1+x_2+x_3)/3, (y_1+y_2+y_3)/3]$

Property 1: Divides each median in ratio 2:1

Property 2: Always lies inside the triangle

Property 3: Centroid of area = Centroid of vertices

Medians & Centroid Theorem

Theorem: Centroid divides median in 2:1 ratio

Proof:

- In triangle ABC, AD is median
- Centroid G lies on AD
- AG : GD = 2 : 1
- · Similarly for other medians

Example: Triangle with vertices (0,0), (4,0), (0,3). Find centroid.

- G = [(0+4+0)/3, (0+0+3)/3]
- G = [4/3, 3/3] = [4/3, 1]
- Centroid: (1.33, 1)

4. INCENTER - CENTER OF INCIRCLE

Definition & Properties

Incenter (I) is the point where all three angle bisectors of the triangle intersect. It is the center of the inscribed circle (incircle).

Coordinates: $I = [(ax_1+bx_2+cx_3)/(a+b+c), (ay_1+by_2+cy_3)/(a+b+c)]$

Property 1: Equidistant from all three sides
Property 2: Always lies inside the triangle

Property 3: Inradius $r = \Delta/s$ where $\Delta = area$, s = semi-

perimeter

Angle Bisector Theorem

Angle Bisector Theorem:

If AD is angle bisector of $\angle A$ in $\triangle ABC$, then: BD/DC = AB/AC

Example: In triangle with sides 5,6,7, find inradius

- s = (5+6+7)/2 = 9
- Area = $\sqrt{[9(9-5)(9-6)(9-7)]} = \sqrt{[9\times4\times3\times2]} = \sqrt{216} = 6\sqrt{6}$
- Inradius $r = \Delta/s = (6\sqrt{6})/9 = (2\sqrt{6})/3$
- Inradius: 2√6/3 ≈ 1.633

5. CIRCUMCENTER - CENTER OF CIRCUMCIRCLE

Definition & Properties

Circumcenter (O) is the point where all three perpendicular bisectors of the sides intersect.

It is the center of the circumscribed circle (circumcircle).

Property 1: Equidistant from all three vertices
Property 2: Position depends on triangle type:

- Acute: Inside triangle

- Right: On hypotenuse midpoint

- Obtuse: Outside triangle

Property 3: Circumradius $R = abc/4\Delta$

Circumradius Formulas

General Triangle: $R = abc/4\Delta$

Right Triangle: R = hypotenuse/2

Equilateral Triangle: $R = a/\sqrt{3}$

Using sides & angles: R = a/(2sinA) = b/(2sinB) = c/(2sinC)

Example: Right triangle with sides 3,4,5. Find circumradius.

- For right triangle, R = hypotenuse/2
- Hypotenuse = 5
- R = 5/2 = 2.5

6. ORTHOCENTER - INTERSECTION OF ALTITUDES

Definition & Properties

Orthocenter (H) is the point where all three altitudes of the triangle intersect.

Property 1: Position depends on triangle type:

- Acute: Inside triangle

- Right: At right angle vertex

- Obtuse: Outside triangle

Property 2: In acute triangle, orthocenter lies inside

Property 3: In right triangle, orthocenter = right angle

vertex

Euler Line Theorem

Euler Line Theorem:

```
In any triangle, Centroid (G), Circumcenter (O), and Orthocenter (H) are collinear. G divides OH in ratio 2:1 (OG:GH = 2:1) O---G---H (OG = 2 \times GH)
```

Example: Equilateral triangle - Special case

- In equilateral triangle, all four centers coincide
- Centroid = Incenter = Circumcenter = Orthocenter
- They all lie at the same point

7. COMPARISON OF ALL CENTERS

Centers Summary Table

Center	Definition	Properties	Position
Centroid (G)	Intersection of medians	Divides medians 2:1, Center of gravity	Always inside
Incenter (I)	Intersection of angle bisectors	Equidistant from sides, Incircle center	Always inside
Circumcenter (O)	Intersection of perpendicular bisectors	Equidistant from vertices, Circumcircle center	Inside/On/Outside
Orthocenter (H)	Intersection of altitudes	-	Inside/On/Outside

Special Cases

Equilateral Triangle:

- All four centers coincide at the same point
- This point is the center of both incircle and circumcircle

Isosceles Triangle:

- All centers lie on the axis of symmetry
- Centroid, Incenter, Circumcenter, Orthocenter are collinear

Right Triangle:

- Circumcenter = midpoint of hypotenuse
- Orthocenter = right angle vertex

8. SSC CGL PRACTICE PROBLEMS

Problem Set with Solutions

Problem 1: Find centroid of triangle with vertices (1,2), (3,4), (5,6)

Solution:

- G = [(1+3+5)/3, (2+4+6)/3]
- G = [9/3, 12/3] = [3, 4]
- Centroid: (3,4)

Problem 2: Equilateral triangle side 6cm. Find inradius and circumradius.

Solution:

- Inradius $r = a/(2\sqrt{3}) = 6/(2\sqrt{3}) = 3/\sqrt{3} = \sqrt{3}$ cm
- Circumradius R = $a/\sqrt{3}$ = $6/\sqrt{3}$ = $2\sqrt{3}$ cm
- $r = \sqrt{3}$ cm, $R = 2\sqrt{3}$ cm

Problem 3: Right triangle sides 6cm, 8cm, 10cm. Find distance between incenter and circumcenter.

Solution:

- For right triangle: O = hypotenuse midpoint = (5,0)
- Incenter coordinates: use formula
- Distance OI = $\sqrt{[(R-2r)^2]}$ = R 2r (since R > 2r)
- R = 5, r = (a+b-c)/2 = (6+8-10)/2 = 2
- OI = 5 4 = 1 cm

Important Theorems for SSC CGL

- **1. Apollonius Theorem:** $AB^2 + AC^2 = 2(AD^2 + BD^2)$ where AD is median
- 2. Angle Bisector Theorem: BD/DC = AB/AC
- **3. Pythagoras Theorem:** $a^2 + b^2 = c^2$ (for right triangle)

- **4. Basic Proportionality Theorem:** If DE || BC, then AD/DB = AE/EC
- **5. Euler Line Theorem:** O, G, H are collinear with OG:GH = 2:1

Triangles & Their Centers - SSC CGL Master NotesComprehensive Educational Content • Created by GovtExamPrep

© GovtExamPrep - All educational rights reserved. This content may be freely distributed for educational purposes.