SQUARE ROOTS

Complete SSC CGL Mathematics Notes

Comprehensive Guide with Methods & Examples • Created by GovtExamPrep

1. BASIC CONCEPTS OF SQUARE ROOTS

Definition and Notation

Square Root: The square root of a number is a value that, when multiplied by itself, gives the original number.

If $a^2 = b$, then a is the square root of b.

Notation: √b = a

Mathematical Representation:

If
$$a^2 = b$$
, then $\sqrt{b} = a$

Examples:

- $4^2 = 16$, so $\sqrt{16} = 4$
- $7^2 = 49$, so $\sqrt{49} = 7$
- $12^2 = 144$, so $\sqrt{144} = 12$

Number	Square	Square Root	
1	1	1	
2	4	√2 ≈ 1.414	
3	9	√3 ≈ 1.732	
4	16	2	
5	25	√5 ≈ 2.236	
6	36	√6 ≈ 2.449	
7	49	√7 ≈ 2.646	
8	64	√8 ≈ 2.828	
9	81	3	
10	100	√10 ≈ 3.162	

Properties of Square Roots

Important Properties:

- $\sqrt[4]{(a \times b)} = \sqrt[4]{a} \times \sqrt{b}$
- $\sqrt{(a/b)} = \sqrt{a} / \sqrt{b}$ (where $b \neq 0$)
- $(\sqrt{a})^2 = a$
- $\sqrt{(a^2)} = |a|$ (absolute value)
- \sqrt{a} is always non-negative for real numbers

Example: Verify properties with numbers

- $\sqrt{(4 \times 9)} = \sqrt{36} = 6$ and $\sqrt{4} \times \sqrt{9} = 2 \times 3 = 6$
- $\sqrt{(25/4)} = \sqrt{6.25} = 2.5$ and $\sqrt{25}/\sqrt{4} = 5/2 = 2.5$ $\sqrt{}$
- $(\sqrt{16})^2 = 4^2 = 16 \checkmark$
- $\sqrt{(5^2)} = \sqrt{25} = 5 = |5| \checkmark$

2. PERFECT SQUARES AND THEIR ROOTS

Understanding Perfect Squares

Perfect Square: A number that is the square of an integer.

Examples: 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, ...

Identifying Perfect Squares:

- Ends with 0, 1, 4, 5, 6, or 9
- Digital root is 1, 4, 7, or 9
- Even number of zeros at the end
- Last two digits form specific patterns

Number	Perfect Square?	Reason
144	Yes	$12^2 = 144$
200	No	√200 ≈ 14.142 (not integer)
625	Yes	$25^2 = 625$
1000	No	√1000 ≈ 31.622 (not integer)

Common Perfect Squares (1-30)

Perfect Squares Table:

$$1^2=1$$
, $2^2=4$, $3^2=9$, $4^2=16$, $5^2=25$, $6^2=36$, $7^2=49$, $8^2=64$, $9^2=81$, $10^2=100$
 $11^2=121$, $12^2=144$, $13^2=169$, $14^2=196$, $15^2=225$, $16^2=256$, $17^2=289$, $18^2=324$, $19^2=361$, $20^2=400$
 $21^2=441$, $22^2=484$, $23^2=529$, $24^2=576$, $25^2=625$, $26^2=676$, $27^2=729$, $28^2=784$, $29^2=841$, $30^2=900$

Memory Tip: Remember these key perfect squares:

$$12^2 = 144$$
, $13^2 = 169$, $14^2 = 196$, $15^2 = 225$, $16^2 = 256$, $17^2 = 289$, $18^2 = 324$, $19^2 = 361$, $20^2 = 400$

3. METHODS TO FIND SQUARE ROOTS

Prime Factorization Method

Steps for Prime Factorization:

- 1. Find prime factors of the number
- 2. Group the factors in pairs
- 3. Take one factor from each pair
- 4. Multiply these factors to get square root

Example: Find √1764 using prime factorization

Solution:

- Prime factors of 1764: $2 \times 2 \times 3 \times 3 \times 7 \times 7$
- Group in pairs: $(2\times2)\times(3\times3)\times(7\times7)$
- Take one from each pair: $2 \times 3 \times 7$
- $\cdot \sqrt{1764} = 2 \times 3 \times 7 = 42$
- Verification: $42^2 = 1764 \checkmark$

Example: Find √1296 using prime factorization

Solution:

- Prime factors of 1296: $2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 3 \times 3$
- Group in pairs: $(2\times2)\times(2\times2)\times(3\times3)\times(3\times3)$
- Take one from each pair: $2 \times 2 \times 3 \times 3$
- $\cdot \sqrt{1296} = 2 \times 2 \times 3 \times 3 = 36$

Long Division Method

Long Division Steps:

- 1. Group digits in pairs from right
- 2. Find largest number whose square ≤ first group
- 3. Subtract and bring down next pair
- 4. Double the quotient and find next digit
- 5. Repeat until all pairs are used

Example: Find √576 using long division

- Group: 5 76
- Largest number with square ≤ 5 is 2 (2²=4)
- Subtract: 5-4=1, bring down 76 \rightarrow 176
- Double quotient: $2 \times 2 = 4$, find digit x such that $4x \times x \le 176$
- $44 \times 4 = 176$ exactly
- √576 = 24

4. SQUARE ROOTS OF DECIMALS AND FRACTIONS

Decimal Square Roots

For Decimals:

- Make pairs from decimal point both ways
- Use long division method
- Place decimal point in quotient when you reach decimal point in dividend

Example: Find √2.25

Solution:

- $\cdot 2.25 = 225/100$
- $\sqrt{(225/100)} = \sqrt{225/\sqrt{100}} = 15/10 = 1.5$
- Verification: $1.5^2 = 2.25 \checkmark$

Example: Find √0.09

Solution:

- -0.09 = 9/100
- $\sqrt{(9/100)} = \sqrt{9}/\sqrt{100} = 3/10 = 0.3$
- Verification: $0.3^2 = 0.09 \checkmark$

Fraction Square Roots

For Fractions:

$$\sqrt{(a/b)} = \sqrt{a} / \sqrt{b}$$

For Mixed Fractions:

Convert to improper fraction first

Example: Find √(25/64)

Solution:

• $\sqrt{(25/64)} = \sqrt{25}/\sqrt{64} = 5/8$

• Verification: $(5/8)^2 = 25/64 \checkmark$

Example: Find √(21/4)

- 21/4 = 9/4
- $\sqrt{(9/4)} = \sqrt{9}/\sqrt{4} = 3/2 = 1.5$
- Verification: $1.5^2 = 2.25 = 2\frac{1}{4} \checkmark$

5. APPROXIMATION AND ESTIMATION

Estimation Method

Estimation Steps:

- 1. Find nearest perfect squares
- 2. Identify range
- 3. Use linear approximation if needed
- 4. Refine estimate

Example: Estimate √50

Solution:

- Nearest perfect squares: 49 (7²) and 64 (8²)
- 50 is closer to 49 than to 64
- Difference: 50-49=1, Total difference: 64-49=15
- Estimate: $7 + (1/15) \approx 7 + 0.067 = 7.067$
- Actual: √50 ≈ 7.071 (very close!)

Example: Estimate √120

- Nearest perfect squares: 100 (10²) and 121 (11²)
- 120 is closer to 121 than to 100
- Difference: 121-120=1, Total difference: 121-100=21
- Estimate: $11 (1/21) \approx 11 0.048 = 10.952$
- Actual: √120 ≈ 10.954 (very close!)

6. SSC CGL PRACTICE PROBLEMS

Previous Year Question Types

Problem 1: Find √(1764)

Solution:

- Prime factors: $2 \times 2 \times 3 \times 3 \times 7 \times 7$
- Group: $(2\times2)\times(3\times3)\times(7\times7)$
- $\sqrt{1764} = 2 \times 3 \times 7 = 42$

Problem 2: Simplify $\sqrt{50} + \sqrt{18} - \sqrt{8}$

Solution:

- $\sqrt{50} = \sqrt{(25 \times 2)} = 5\sqrt{2}$
- $\sqrt{18} = \sqrt{(9 \times 2)} = 3\sqrt{2}$
- $\sqrt{8} = \sqrt{(4 \times 2)} = 2\sqrt{2}$
- Expression = $5\sqrt{2} + 3\sqrt{2} 2\sqrt{2} = 6\sqrt{2}$

Problem 3: If $\sqrt{x} = 12$, find x^2

Solution:

- $\sqrt{x} = 12 \Rightarrow x = 12^2 = 144$
- $x^2 = 144^2 = 20736$

Problem 4: Find the value of √(0.0625)

- \bullet 0.0625 = 625/10000
- $\sqrt{(625/10000)} = \sqrt{625/\sqrt{10000}} = 25/100 = 0.25$

7. QUICK METHODS & SHORTCUTS

Mental Calculation Tricks

For numbers ending with 5:

 $(n5)^2 = n(n+1)$ followed by 25

Example: $35^2 = 3 \times 4 = 12$, add $25 \rightarrow 1225$

Square Root Estimation:

- If number ends with 1, root ends with 1 or 9
- If number ends with 4, root ends with 2 or 8
- If number ends with 5, root ends with 5
- If number ends with 6, root ends with 4 or 6
- If number ends with 9, root ends with 3 or 7

Quick Perfect Square Check:

- Digital root should be 1,4,7,9
- Last two digits should be from specific patterns
- Even number of zeros at end

Important Square Roots to Memorize

Number	Square Root	Approximation	
2	√2	1.414	
3	√3	1.732	
5	√5	2.236	
6	√6	2.449	
7	√7	2.646	
8	√8	2.828	
10	√10	3.162	

8. SSC CGL PREPARATION STRATEGY

Expected Marks Distribution

Торіс	Frequency	Difficulty	Marks Weightage
Perfect Square Roots	High	Easy	1-2 marks
Prime Factorization	Medium	Medium	1 mark
Long Division Method	Low	Hard	1 mark
Decimal/Fraction Roots	Medium	Medium	1-2 marks
Simplification	High	Medium	2-3 marks

15-Day Study Plan

Week 1: Foundation Building

- Days 1-3: Perfect squares and basic concepts
- Days 4-5: Prime factorization method
- Days 6-7: Long division method

Week 2: Advanced Topics & Practice

- Days 8-9: Decimal and fraction square roots
- Days 10-11: Approximation and estimation
- Days 12-13: Simplification problems
- Days 14-15: Previous year papers and revision

Daily Practice Routine:

- Memorize 5 new perfect squares daily
- Practice 10 prime factorization problems
- Solve 5 simplification problems
- · Learn estimation techniques

Exam Tips

Time Management:

- Perfect squares: 30 seconds
- Prime factorization: 1-2 minutes

Long division: 2-3 minutesSimplification: 1-2 minutes

Common Mistakes to Avoid:

- Forgetting negative roots when applicable
- Incorrect pairing in prime factorization
- Wrong decimal point placement
- Calculation errors in long division

Square Roots - SSC CGL Master Notes

Comprehensive Guide with Methods & Examples • Created by GovtExamPrep

© GovtExamPrep - All educational rights reserved. This content may be freely distributed for educational purposes.