CHAPTER 6: CODING & DECODING

SSC CGL Reasoning - Complete Chapter Guide

Letter Coding | Number Coding | Symbol Coding | Pattern Recognition | SSC CGL Exam Focus

Printing Instructions:

Step 1: Click "Print Chapter" button above

Step 2: Choose "Save as PDF" as printer

Step 3: Set margins to 0.5 inches

Step 4: Enable background graphics

Chapter Overview: This chapter covers various coding and decoding techniques including letter coding, number coding, symbol coding, and mixed coding patterns essential for SSC CGL reasoning section.

127.0.0.1:5500/l1.html 1/13

6.1 UNDERSTANDING CODING-DECODING

What is Coding-Decoding?

Definition: Coding is the process of converting a word, phrase, or message into a particular code using specific patterns or rules. Decoding is the reverse process of converting the code back to the original message.

Key Insight: Coding-decoding tests your ability to identify patterns, apply logical rules, and work systematically with letters, numbers, and symbols.

Types of Coding-Decoding

Letter Coding

- Alphabet position based
- Forward/backward shifting
- Letter-to-letter coding
- Word pattern coding
- Mixed letter coding

Number Coding

- Letter position numbers
- Mathematical operations
- Digit sum/product coding
- Number-to-letter coding
- · Mixed number coding

Symbol Coding

- Symbol replacement
- Pattern-based symbols
- · Mixed symbol coding
- Conditional coding
- Complex symbol patterns

127.0.0.1:5500/l1.html 2/13

6.2 LETTER CODING TECHNIQUES

Alphabet Position System

1 A 2 B 3 C 4 D 5 E 6 F 7 G 8 H 9 I 10 J 11 K 12 L 13 M 14 N 15 O 16 P 17 Q 18 R 19 S 20 T 21 U 22 V 23 W 24 X 25 Y 26 Z

```
Key Position Formulas:
```

- Forward Position: A=1, B=2, C=3, ..., Z=26
- Reverse Position: Z=1, Y=2, X=3, ..., A=26
- Reverse = 27 Forward Position
- Modular Arithmetic: 27 = 1, 28 = 2, etc.

Common Letter Coding Patterns

Popular Coding Patterns:

- Forward Shift $A \rightarrow B$, $B \rightarrow C$, $C \rightarrow D$ (Add 1)
- Backward Shift $A \rightarrow Z$, $B \rightarrow Y$, $C \rightarrow X$ (Subtract 1)
- Fixed Addition $A \rightarrow D$, $B \rightarrow E$, $C \rightarrow F$ (Add 3)
- Fixed Subtraction $A \rightarrow X$, $B \rightarrow Y$, $C \rightarrow Z$ (Subtract 3)
- Opposite Letters A→Z, B→Y, C→X (27 position)
- Vowel-Consonant Different rules for vowels and consonants

Example: If CAT is coded as DBU, how is DOG coded?

Solution:

 $C \rightarrow D (C+1=D)$

 $A \rightarrow B (A+1=B)$

 $T \rightarrow U (T+1=U)$

Pattern: Each letter +1 position

DOG: D+1=E, O+1=P, G+1=H

Answer: EPH

127.0.0.1:5500/l1.html 3/l3

127.0.0.1:5500/l1.html 4/13

6.3 NUMBER CODING METHODS

Position-Based Number Coding

Direct Position Coding

- A=1, B=2, C=3, ..., Z=26
- Word sum coding
- Average position coding
- Reverse position coding
- Mixed position coding

Mathematical Operations

- Addition/subtraction
- Multiplication/division
- Digit sum operations
- Prime number coding
- Square/cube coding

Complex Number Coding

- Multiple operations
- Conditional coding
- Pattern-based coding
- Mixed rules coding
- Multi-level coding

Example: If APPLE = 1+16+16+12+5 = 50, then MANGO = ?

Solution:

A=1, P=16, P=16, L=12, E=5

Sum = 1+16+16+12+5 = 50

MANGO: M=13, A=1, N=14, G=7, O=15

Sum = 13+1+14+7+15 = 50

Answer: 50

Digit-Based Coding

Digit Sum Coding Patterns:

- 1 Simple Digit Sum Sum of all digits
- 2 Digital Root Repeated digit sum until single digit
- 3 Digit Product Product of all digits
- 4 Position Digit Sum Sum of position digits

127.0.0.1:5500/l1.html 5/13

Mixed Operations - Combination of operations

6.4 SYMBOL CODING PATTERNS

Symbol Replacement Coding

Symbol Coding Strategies:

- Each symbol represents a specific letter/number
- Symbols may follow positional patterns
- Look for visual similarities between symbols and letters
- Check for mathematical relationships
- Identify grouping patterns in symbols

Example: If @ represents A, # represents B, \$ represents C, then what does @#\$ represent?

Solution:

@ = A

= B

\$ = C

@#\$ = ABC

Answer: ABC

Complex Symbol Patterns

Pattern Type	Description	Example
Direct Replacement	Each symbol directly replaces a letter	★ =A, ♠ =B, ♣ =C
Position-Based	Symbols follow alphabet position patterns	★ =1, ♠ =2, ♣ =3 (A,B,C)
Mathematical	Symbols represent mathematical operations	★=+, ♠ =-, ♣ =×
Conditional	Symbol meaning changes based on position	First ★=A, Second ★=B

127.0.0.1:5500/I1.html 6/13

127.0.0.1:5500/l1.html 7/13

6.5 MIXED CODING PATTERNS

Letter-Number Mixed Coding

Mixed Coding Examples:

Pattern 1: A1, B2, C3, D4 (Letter + Position)

Pattern 2: 1A, 2B, 3C, 4D (Position + Letter)

Pattern 3: A1Z, B2Y, C3X (Letter + Position + Reverse)

Pattern 4: 1Z2, 2Y3, 3X4 (Complex mixed patterns)

Decoding Exercise:

If CODE is written as DPEB, how is BOOK written?

Solution Steps:

 $C \rightarrow D (C+1)$

 $O \rightarrow P (O+1)$

 $D \rightarrow E (D+1)$

 $E \rightarrow B$ (E-3 or pattern change)

Actually, let's check: C+1=D, O+1=P, D+1=E, E-3=B

BOOK: B+1=C, O+1=P, O+1=P, K-3=H

Answer: **CPPH**

Conditional Coding

Conditional Coding Rules:

- Different rules for vowels and consonants
- Position-based condition changes
- Odd-even position different coding
- · Capital-small letter different rules
- Word length based coding changes
- First-last letter special coding

127.0.0.1:5500/I1.html 8/13

6.6 PRACTICE QUESTIONS WITH SOLUTIONS

Letter Coding Questions

Q1. If WORK is coded as XPSL, how is JOB coded?

- A) KPC
- B) KPE
- C) KQC
- D) KQC

Answer: A) KPC

Solution: W+1=X, O+1=P, R+1=S, K+1=L

Pattern: Each letter +1 position

JOB: J+1=K, O+1=P, $B+1=C \rightarrow KPC$

Q2. If ZEBRA is coded as YDAQZ, how is TIGER coded?

- A) SHFDQ
- B) SHFDS
- C) SHFDQ
- D) SHFDR

Answer: A) SHFDQ

Solution: Z-1=Y, E-1=D, B-1=A, R-1=Q, A-1=Z

Pattern: Each letter -1 position (A-1=Z)

TIGER: T-1=S, I-1=H, G-1=F, E-1=D, R-1=Q \rightarrow SHFDQ

Number Coding Questions

Q3. If CAT =
$$3120$$
, then DOG = ? (A=1, B=2, ..., Z=26)

- A) 4157
- B) 4156
- C) 4158
- D) 4159

Answer: A) 4157

Solution: C=3, A=1, T=20 → 3120

DOG: D=4, O=15, G=7 \rightarrow 4157

Mixed Coding Questions

127.0.0.1:5500/l1.html 9/13

Q4. In a certain code, 'RATIONAL' is written as 'RATINOLA'. How is 'TRIBAL' written in that code?

- A) TIRBAL
- B) TIRLBA
- C) TRIALB
- D) TIRABL

Answer: B) TIRLBA

Solution: RATIONAL → RATINOLA

Pattern: First 3 letters same, next 2 swapped, last 3 in reverse

RAT (same) + IO (swap) + NAL (reverse) → RAT + IN + OLA

TRIBAL: TRI (same) + BA (swap) + L (single letter remains) → TRI + AB + L

Wait, let's check pattern properly

Actually: RAT (1-3 same), I (4th), O (5th swapped with 6th?), NAL (7-8-9?)

Better approach: RATIONAL has 8 letters: 1-2-3 same, 4-5 swap with 6-7?, 8

same?

Let me analyze: R-A-T-I-O-N-A-L → R-A-T-I-N-O-L-A

Positions: 1(R),2(A),3(T) same, $4(I)\leftrightarrow 5(O)$ swap? No, I(4) and O(5) became I(4)

and N(6)?

Actually: 1-2-3 same, 4-5-6-7-8 rearranged as 4-6-5-8-7

So TRIBAL: 1-2-3 same (TRI), 4-5-6 as 4-6-5 (B-A-L \rightarrow B-L-A)

Answer: TRI + B + L + A = TIRLBA

127.0.0.1:5500/l1.html 10/13

127.0.0.1:5500/l1.html 11/13

6.7 SSC CGL EXAM STRATEGY

Time Management & Approach

Exam Strategy for Coding-Decoding:

- 1. **Quick Pattern Identification** Identify coding type (10 seconds)
- 2. **Test Simple Patterns First** Check +1/-1 shifts (15 seconds)
- 3. **Verify with Multiple Letters** Confirm pattern consistency (10 seconds)
- 4. **Apply to Required Word** Code/decode systematically (15 seconds)
- 5. Check Answer Options Match with calculated result (5 seconds)
- 6. **Verify Special Cases** Check A/Z boundaries (5 seconds)
- 7. Select and Move Don't overcomplicate

Common SSC CGL Coding Patterns:

- Letter +1/-1 shifts
- Number position coding
- Mixed letter-number coding
- Symbol replacement
- Word rearrangement
- Mathematical operations
- Conditional coding rules

Common Mistakes to Avoid

Critical Coding Errors:

- Forgetting A/Z boundary conditions
- Miscounting alphabet positions
- Overlooking vowel-consonant rules
- Missing pattern changes in long words
- Confusing forward and reverse coding
- Calculation errors in number coding
- Not verifying with all given examples
- Rushing without understanding pattern

127.0.0.1:5500/l1.html 12/13

6.8 REVISION & PRACTICE PLAN

Daily Practice Routine

4-Week Preparation Plan:

```
Week 1: Basic Letter Coding & Position System (20 questions/day)
Week 2: Number Coding & Mathematical Patterns (25 questions/day)
Week 3: Mixed Coding & Complex Patterns (25 questions/day)
Week 4: Speed Practice & Mock Tests (30 questions/day)
```

Effective Coding Practice:

- Memorize alphabet positions thoroughly
- Practice quick mental calculations
- Learn to recognize common patterns quickly
- Work on speed and accuracy simultaneously
- Practice different coding types daily
- Review mistakes to identify weak areas
- Time yourself to improve efficiency

Key Formulas & Patterns

Pattern Type	Key Formula/Pattern	
Forward Shift	New Position = Original Position + n	
Backward Shift	New Position = Original Position - n	
Reverse Coding	New Position = 27 - Original Position	
Number Coding	Sum of letter positions in word	
Digital Root	Sum digits repeatedly until single digit	
Boundary Handling	If position > 26, subtract 26; if < 1, add 26	

Chapter 6: CODING & DECODING - SSC CGL Reasoning Preparation

© 2023 SSC CGL Master Notes - Complete Chapter Guide Use the Print button above to save as PDF for offline study

127.0.0.1:5500/l1.html 13/13